Optimization over degree sequences of graphs
نویسندگان
چکیده
We consider the problem of finding a subgraph given graph minimizing sum functions at vertices evaluated their degrees. While is NP-hard already for bipartite graphs when are convex on one side and concave other, we have that all convex, can be solved in polynomial time any graph. also provide solutions with fixed arbitrary functions, but number either nondecreasing or nonincreasing. note general factor (l,u)-factor over special cases our problem, as well intriguing exact matching problem. The complexity remains widely open, particularly complete graphs.
منابع مشابه
Optimization over Degree Sequences
We introduce and study the problem of optimizing arbitrary functions over degree sequences of hypergraphs and multihypergraphs. We show that over multihypergraphs the problem can be solved in polynomial time. For hypergraphs, we show that deciding if a given sequence is the degree sequence of a 3-hypergraph is computationally prohibitive, thereby solving a 30 year long open problem. This implie...
متن کاملDegree sequences of monocore graphs
A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d1, . . . , dn is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n− 1, if and only if k ≤ di ≤ min {n− 1, k + n− i} and
متن کاملDegree Sequences of F-Free Graphs
Let F be a fixed graph of chromatic number r + 1. We prove that for all large n the degree sequence of any F -free graph of order n is, in a sense, close to being dominated by the degree sequence of some r-partite graph. We present two different proofs: one goes via the Regularity Lemma and the other uses a more direct counting argument. Although the latter proof is longer, it gives better esti...
متن کاملDegree sequences of highly irregular graphs
We call a simple graph highly irregular if each of its vertices is adjacent only to vertices with distinct degrees. In this paper we examine the degree sequences of highly irregular graphs. We give necessary and sufficient conditions for a sequence of positive integers to be the degree sequence of a highly irregular graph.
متن کاملOn realization graphs of degree sequences
Given the degree sequence d of a graph, the realization graph of d is the graph having as its vertices the labeled realizations of d, with two vertices adjacent if one realization may be obtained from the other via an edge-switching operation. We describe a connection between Cartesian products in realization graphs and the canonical decomposition of degree sequences described by R.I. Tyshkevic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2021
ISSN: ['1872-6771', '0166-218X']
DOI: https://doi.org/10.1016/j.dam.2019.12.016